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ABSTRACT

The simulation of realistic virtual crowds has been an active research area in several domains,

including film industry, video games, engineering, and psychology. The main aspect of visual

crowd is the ability of having agents capable of navigating to their goal by avoiding collisions

with obstacles and other agents. The authoring part, which is the ways of building and control-

ling the simulations, is also a key point. During the years, multiple approaches and methods have

been utilized for crowd simulation, with remarkable results. With the rise of deep learning meth-

ods, reinforcement learning has shown great results in sequential decision-making problems, and

it would not be long until it was also applied to virtual crowds. Reinforcement learning is able

to produce simulations with complex scenarios by using simple reward functions that control the

navigation and behavior of the agents. Thus, this work explores various methods which focusing

on how reinforcement learning can be applied to the area of crowd simulation. Specifically, two

RL-based approaches are presented, a microscopic which focuses on bringing diversity among

agents’ behaviors and enables the real-time modification of them, and a mesoscopic approach

which concentrates on creating large-scale simulations by combining a list of available compo-

nents.

Andreas Panayiotou – University of Cyprus, 2022
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Chapter 1

Introduction

1.1 Motivation

Virtual environments is an area of computer graphics that concerns the research community

for years. Realistic environments with high fidelity graphics and human-like simulations is the

ultimate goal. Specifically, crowd navigation and simulation is essential in the creation of such

environments while they can be found in many other applications including games, movies and

training simulators. In recent years, with the raise of the available computational power, artists

manage to create impressively realistic 3D models which populate visual environments. However,

the ability of animating these models realistically has not evolved at the same rate. This is due to

that the movement of a live person affected by various factors including, psychology, environment

and health. Thus, these factors adds to the complexity of the problem and many challenges that

need to be overcame arise.

Human crowd simulation and animation have been extensively researched thought the years

and various works and approaches have been proposed. The majority of works focused on crowd

navigation, where agents have to arrive efficiently at a goal position by avoiding collisions with ob-

stacles and other agents. Although, there are many successful works regarding crowd navigation,

1
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2

the diversity of behaviors is missing, a thing that is important when we have live-like simulation

expectations. Likewise, in everyday life people is not just moves with the aim of arriving at their

goal; some people may stop to talk to someone else, while others may stand around certain kiosks

to buy goods. Thus, the ability to have heterogeneity and behavioral diversity is crucial in crowd

simulations if we want to reach the levels of real human movement.

Furthermore, another critical part of virtual crowds is the capability of controlling agents’

behaviors and movement from a higher level. We do not only need realistic dynamic movement,

but we also have the need of easy-to-use tools that enable users to generate crowds based on their

desires and even variate them in real-time.

Artificial Intelligence seems to be a useful tool applied in many areas, while Machine Learning

(ML) found a solution to various problems which may were unsolvable using traditional methods.

In other words, ML has opened the horizons in various applications and it was expected that many

people would be motivated to apply ML in computer graphics, and specifically in crowd simu-

lation. Recently, numerous data-driven approaches for learning behaviour models in the context

of crowd simulation have been investigated, the bulk of which are based on Supervised Learn-

ing (SL). Reinforcement Learning (RL) is another method that has been introduced by a few

researchers in crowd related applications and seems that it has a massive potential. The differ-

ence from the traditional data-driven machine learning methods is that, the data are not passed

directly as input to the network, but they are simulated during the training phase while agents

try to learn a behaviour by maximizing a simple reward function. Thus, would be interesting to

further investigate RL related methods with the aim of evolving crowd simulation capabilities.And
rea
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1.2 Scope of the Work

The scope of this work is the use of Neural Networks and specifically Deep Reinforcement

Learning to train models that can be applied to simulate virtual crowds. The main focus of the

work is the heterogeneity of behaviors in virtual crowds while other methods will be explored

which allows the creation of medium-to-large scale populated environments in a higher level.

Likewise, some emphasis will be given on ways that the user can alter and control these behaviors

with ease, even in real-time.

1.3 Thesis Structure

This thesis is divided into chapters and sections. First, the Chapter 2 is focused on the presen-

tation of a list of related works divided in four sections, heterogeneity in crowds, global navigation,

crowds authoring and reinforcement learning. The Chapter 3 contains a description the main tools

that have been used in the implementation of this work. Next, in Chapter 4 the first approach,

which is focused in the diversity of behaviors is presented. Every detail about the implementation

including methodology, rewards, observations, actions and strategy is described, followed by an

evaluation phase which contains analysis, comparisons, discussions and future work. With similar

structure as the previous chapter, the focal point of Chapter 5 is the presentation of another RL

method which aims in a mesoscopic crowd model. Finally, Chapter 6 summarises this thesis.
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Chapter 2

Related Work

Crowd simulation is a topic of computer graphics that has widely researched during the last

years, while various techniques have been proposed to evolve the area. Crowd simulation models

can be categorised in three groups, microscopic, macroscopic and mesoscopic. First, microscopic

models concentrate on the behavior and individual features of each agent, as well as the creation

of collective behavior at a global level from local regulations. In this category, agents are dis-

tinct objects whose movement is impacted by their surroundings in the environment including

other agents and obstacles. They are ineffective for large-scale simulations as usually need high

computational power. Second, macroscopic models are utilised in large-scale simulations and are

concerned with the larger picture. The movement of agents is guided by fields or flows and is

shown as a cohesive and continuous entity. They are incapable of accurately replicating atomic

motion. Finally, mesoscopic models are a newly developed division that has garnered the interest

of researchers. They are models whose primary purpose is to bridge the gap between microscopic

and macroscopic models by combining their respective benefits. Thus, microscopic models are

the most appropriate when behavioral diversity is the main goal. In the following sections of this

4
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5

chapter a list of related works are presented through four categories, heterogeneity in crowds,

global navigation, crowd authoring and reinforcement learning.

2.1 Heterogeneity in Crowds

Virtual Crowds that consisting of agents able to act with diverse behaviors have been addressed

in literature with numerous techniques. The first works achieve heterogeneity by using predeter-

mined weights [49, 50]. More recent works take advantage of personality traits to simulate diverse

behaviors through a list of parameters and constraints that the user can alter to achieve the desired

behaviors [9, 27, 13]. Furthermore, a list of works utilise data-driven methods, where data are

used to define the simulation model, have been proposed which are using graph-based techniques

[30, 29]. Although they produce good results, they lack of variety of behaviors which are found

in real human crowds.

Researchers perceived that behavior diversity is a challenging task, thus they had to search for

different methods to encounter the problem. A common approach take use of databases that con-

tains a list of paradigms that the agents try to imitate [33, 36]. While this method allows realistic

behaviors, is strongly based on the amount and quality of recorded data; larger amount of data

improves the diversity and realism of the movements, on the other hand they increases the com-

putational cost. Furthermore, some other works extend the approach mentioned above by adding

a list of auxiliary actions to increase realism [37, 66]. Likewise, a more sophisticate work by Ju

et al. [21] presents a method that blends existing crowd data, passed to the system as input, to

generate a new crowd animation that can be applied to an arbitrary number of agents. Tempo-

ral Perception Patterns as state representation is also a method that applied by Charalambous and

Chrysanthou. They presented PAG (Perception-Action-Graph) as a way to improve the quality and
And
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efficiency of data-driven methods [3]. Database-based methods undeniably bring noteworthy im-

provements, however the availability, quality, diversity and amount of input data affect drastically

the end results, while the generalisability is limited.

Moreover, some works have been proposed that analyse referenced real world crowd data and

compare them over the desired simulated, as a way to evaluate the performance of the simulated

models [14, 4, 23, 61, 16, 25]. Wolinski et al. [62] introduce a framework to enable fair compar-

isons by automatically estimating the parameters that enable the simulation algorithms to best fit

the given data. He et al. [16] propose a method that enables the application of real world noisy

input data to pilot crowd simulations.

2.2 Global Navigation

As mentioned at the beginning of this chapter, macroscopic and some mesoscopic models

guide agents’ movement by fields or flows. Early works are based on the computation of velocity

fields, extracted by analyzing the geometry of the environment, that govern the global behavior of

crowds [64, 48]. Likewise, other works control the simulation by manually designing those fields

[5, 65], while others utilise the continuum theory for the flow of crowds [57]. Furthermore, data-

driven methods have been applied where researchers implement models that control the group

behavior of crowds by using captured videos from real human crowds [36, 44, 6]. Hu et al. [20]

propose a method for learning typical flow patterns in dense crowds from videos by formulating

these patters as a clustering problem of motion flow fields. Moreover, a list of other works present

methods that forces direct agents’ trajectories by using a responsive path following scheme [42,

45]. Finally, another approach gives the ability to the user to alter the behavior of groups of agents

by interactively editing their formation patterns [29, 56].
And
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2.3 Crowd Authoring

Except from realistic and effective crowd simulations, the ability of supervising these simu-

lations from a higher level and efficiently creating multiple scenarios is also vital. Thus, intu-

itive tools are required which have to be adjusted depending on the type of simulation that the

users want to take control of [35]. First, regarding the navigation of agents in crowds, the ma-

jority of works utilise sketching interfaces that enables the user to draw the flows that guide the

agents [21, 43]. On the other hand, controlling and authoring the animation and visualisation part

of a simulation mostly relies in the manipulation of templates, assets and components [39, 59].

Likewise, another method that extensively found in literature, is based on editing where differ-

ent variations of a simulation are expressed as handle manipulation. An example of editing is

the work proposed by Kwon et al. [29] where individuals can be pinned or dragged to distort a

collective motion while multiple group movements may be joined or combined to create a longer

or bigger group motion. Moreover, Kraayenbrink et al. [28] presents an interactive crowd edi-

tor that provides high-level editing parameters for defining crowd templates; these templates can

be applied to various environments. Finally, authoring local motion can be a result of regulating

high-level behavior and mostly concerned with coding low-level constraints, like time horizon for

the avoidance strategy, in order to manage local movements [26].

2.4 Reinforcement Learning

The growth of Deep Learning, as well as the large variety of applications for which it is being

used, led researchers to investigate and apply RL for crowd simulation, as it has been shown that

is an effective technique for learning optimum solutions in sequential decision-making problems

[53, 55].
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Reinforcement Learning is based on Markov Decision Process (MDP) [2, 54]. A RL problem

can be described by an environment and an agent that uses a set of observations in order to make

decisions and execute suitable actions. The main objective of an agent is to maximise a reward

function, during an academic episode, that describes the desirable behaviour of the agent. An

academic episode runs until the agent reaches a termination state, for example accomplishes its

goal, or a threshold of steps has been passed. Specifically, the agent observes the environment

through a set of observations that can be vector, visual or raycast and then, based on that, chooses

one of the available actions. Then, the current state of the environment changes and the agent

receives a positive or negative reward that evaluates if the action selected was the appropriate for

the current state.

One of the first works that presented the potential of RL for crowd related task is by Treuille

et al. [58] who train nearly optimal controllers that enables real-time characters animation while

avoiding collisions. Then, Peng et al. [47] added to that method by applying it in physically-

based characters. Reinforcement learning approaches have been used in several researches to train

policies for the domain of crowd simulations [40, 11, 18, 32]. Despite the remarkable results,

the majority of works try to describe basic crowd behaviors including goal seeking and colli-

sion avoidance, by simple reward functions which manually tune to achieve the desired results

[32, 38, 41, 51]. This task consumes too much time and effort, as it based on a trial-and-error

procedure until the most suitable values are found; expanding the behavior set of the agents re-

quires readjustments of that values and increase the complexity of the problem. Thus, usually

researchers define a final set of values that are well suited for a specific scenario and apply them.

Except from the difficulty in determining the appropriate values, this approach often lacks of diver-

sity in agents’ behaviors as they are fixed over the whole crowd, while also the high-level control

of that behaviors is limited.
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Lately, researchers focused on exploring methods to improve the generalizability and include

more complex tasks by using policy parameterization approaches. Lee et al. [34] present a new

algorithm that learns a parameterized family of motor skills from a single motion clip, while

Won et al. [63] propose a method of learning parametric controllers for body shape variation. A

more recent work by Hu et al. [19] propose a multi-agent RL approach that learns a parametric

predictive collision avoidance and steering policy, while they also present that training over a

parameter space produces a flexible model across various crowds scenarios. The works that have

been described above introduce a list of control signal as input to the model policy while they use

predetermined reward functions with constant weights that describe various behaviors observed in

human crowds.
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Chapter 3

Technical Review

This chapter lists and describes the different tools and technologies that have been used in

this work. Correct selection of tools is an essential process as every tool has its own capabilities,

positives and negatives, which will affect the end result. Thus, in the following sections there is

a description for every tool used in this work and the reasons that they have chosen over other

solutions.

3.1 Unity3D

Unity 3D is simple modeling software which is regarded as one of the most popular game

engines in the gaming industry. Although is mostly used for game development, is suited very well

to host scientific simulations for various works. Unity is a relatively easy to learn tool, especially

if you have a computer science background and some basic understanding of computer graphics

fundamentals. It provides support of scripts written either in C# or JavaScript, both have same

capabilities, excluding some libraries which may be language-specific. Furthermore, libraries

and frameworks can be included to Unity that enable for example, machine learning integration,

something that provides many possibilities. Finally, Unity game engine was selected over other

10
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engines as it has a massive community of users, where you can search for support, is very well

documented and especially provides integration with ML-Agents Framework which is described

in Section 3.2.

3.2 ML-Agents Toolkit

ML-Agents [22] is an open-source library for Unity that enables games and simulations to

serve as environments for training intelligent agents. By using an easy to use Python-API, the

framework gives the ability to the users to train the agents thought reinforcement learning, im-

itation learning, neuroevolution, or other machine learning methods. Furthermore, ML-Agents

Toolkit benefits both game developers and AI researchers by providing a centralised platform for

evaluating developments in AI on Unity’s rich settings and then making them available to the

broader academic and game developer community.

ML-Agents Toolkit contains four main high-level components, a learning environment, a

Python low-level API, an external communicator and python trainers. First, a learning environ-

ment consists of a Unity scene which includes the simulation area where the agents use to observe,

act and learn. Second, the Python low-level API contains a low-level Python interface which is

used for interaction and manipulation with a learning environment. Third, the external commu-

nicator is utilised by connecting the learning environment with the Python low-level API. Python

trainers are where the machine learning algorithms live, which they are implemented in Python,

and they are used for the training of the agents. Finally, this toolkit was selected as it based on

Unity and is very well documented. Moreover has build-in reinforcement learning algorithms and

provides a number of ready-made sensor components that can be used for the observation set of

the agents including, Raycast Sensors, Camera Sensors and Grid Sensors.
And
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12

Figure 1: A visual representation of ML-Agents high-level components. Multiple agents can have
different behaviors simultaneously including default, inference and heuristic [22].

3.3 TensorBoard

Training a deep learning model is a time-consuming and iterative process, thus it is essential to

have a tool to visualise the model’s development and monitor the learning process. Tensorboard is

provided as an open source toolkit, created by TensorFlow, that gives the ability to the user to track

the evolution of the model during training. The toolkit’s dashboard shows information including

gradients, losses, metrics, and intermediate outputs thought various forms like graphs, histograms,

pictures and text [1].
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Chapter 4

Microscopic Approach

This approach focuses on bringing diverse behaviors in crowd simulation by learning a con-

figurable crowd model that enables the mixing and learning of several behaviors simultaneously;

the presented method uses control signals as inputs to a non-linear learned policy. Likewise, this

work gives the ability to the user to adjust, at run-time, the behavior of agents to the desired needs

by modifying a list of model’s values via simple sliders; change in the model values leads to an

immediate, logical and intuitive switch of the behavior of the affected agents.

4.1 Methodology

The proposed method is inspired from the work by de Woillemont et al. [31] who presented

CARI: a Configurable Agent with Reward as Input; multiple player styles are being trained simul-

taneously, using a single training loop, for the needs of a simple two player game. They also show

that this method can achieve large variety of behaviors while keeping the performance of the clas-

sic reward shaping approach or even outperform it in some cases. The RL approach above could

applied for the needs of heterogeneity in crowd simulations, although there are various challenges

that have to be addressed including balancing the reward signals for each behavior. Specifically,

13
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Proximal Policy Optimization (PPO) implementation provided by ML-Agents Toolkit [22] has

been used for the training of the model. Likewise, the model have been trained using a personal

computer equipped with an Intel i5-9600K CPU, a Nvidia RTX2070 GPU and 16GB RAM; the

training process lasted around 4 days. In the following sections of this chapter they are presented

all the details of the work, how RL has been utilised for the needs of the problem, followed by an

extensive evaluation and discussion.

4.2 Rewards

Reward signals are a critical part in Reinforcement Learning as is the mechanism that describes

the desired behavior of the agents; models are trained by maximizing the cumulative reward,

obtained by a reward function, during the training phase [52]. A reward function is constructed

by combining a list of individual rewards; selecting and balancing those rewards is usually a

challenging process. Specifically, regarding the crowd simulation scenario there is the need of

rewards that describe the real human behavior as close as possible; rewards, that describe each sub-

task, have to be assigned for common behaviors including goal seeking and collision avoidance,

while in case of more complex behaviors the solution is not trivial.

As mentioned in previous chapters, heterogeneity in crowds is important when we want to

achieve realistic results; every person has a different personality and behavior that the majority of

the times may be affected by its mood and also environmental factors. This diversity of behav-

iors is difficult and time-consuming to be described with constant hard-coded rewards. Thus, in

this work a different approach is presented while a list of weights are used to describe the impor-

tance of each behavior at any given time. Specifically, they have been selected four behaviors a)

goal seeking, b) collision avoidance, c) grouping and d) interaction with point of interests (POIs),

where each behavior has its own weight. The combination of those weights {wg, wca, wgr, wi}
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describes the behavior of an agent and defines a profile. Each one of those weights has its own

range of values, which was selected after a trial-and-error process, as shown in Table 1. The higher

a value of a weight, the greater is the effect of the behavior that it describes; for example by setting

wg = 1.3 has an effect of a more goal-oriented agent than when is set to wg = .2. Finally, is noted

that wg and wca takes only positive values as it has been assumed that the agents always have to

be governed by a goal seeking and collision avoidance behavior.

Table 1: Value range for every behavior’s weight.

Weight Range Behavior

wg [.1, 1.8] Goal Seeking
wca [.5, 3.5] Collision Avoidance
wgr [−3, 5] Grouping
wi [−5, 5] Interaction

Furthermore, each weight shown in Table 1 is multiplied by the corresponding fixed value, as

shown in Table 2 to form the reward signal for each sub-task. Both sparse and dense rewards are

used which will be described extensively in the following paragraphs.

Sparse rewards are large positive and negative rewards that are given to the agent when reach-

ing its goal position Rg and colliding with other agents or obstacles Rca, Rco. First, regarding Rg,

is multiplied with goal seeking behavior weight wg to describe the importance of arriving at goal

position at any given time. Second, following the same logic, collision related rewards Rca, Rco

are multiplied with wca, where colliding with obstacles has a larger penalty than colliding with

other agents.

Dense rewards are small positive and negative rewards that indirectly guide the agent to

achieve the desire behavior. First, Rgt and Rga are multiplied with goal seeking behavior weight

wg, to reward the agent when moving towards or away from the goal position. In order for an

And
rea

s P
an

ay
iot

ou



16

agent to move towards the goal position, the current distance from its position and the goal point

has to be smaller than the one of the previous step, while also the angle |θ| between its look vector

and the vector starting from its position and ends at the goal point, has to be smaller and equal

than 45o. Likewise, a negative rewardRl is combined with wg to form a living reward that encour-

age the agent to arrive at goal position as fast as possible when goal seeking behavior is superior

to the others. Second, two more complex behaviors are incorporated in the profile of an agent.

When grouping behavior is set, agents are enforced to form small groups in the environment; an

agent receives positive reward for successfully executing grouping behavior when a) is part of a

neighbourhood consisting of less thanNT nearest neighbors, and b) agent’s look vector is pointing

towards the centre of mass of all agents in the neighborhood. During the experiments NT ∈ [3, 5]

to enforce small groups, however the user can define the desirable range. Furthermore, regarding

interaction behavior, the reward Ri is used in combination with wi; an agent receives a positive

interaction reward when a) its look vector is pointing towards the center of POI object and b) has

N ≤ NT agents around it to avoid overcrowding situations.

Table 2: Reward per event with its corresponding weight.

Event Symbol Base Reward Weight Type

Reached Goal Rg +1.0 wg Sparse
Agent Collision Rca -.01 wca Sparse
Obstacle Collision Rco -.5 wca Sparse

Towards Goal Rgt +.00075 wg Dense
Away from Goal Rga -.00025 wg Dense
In Group Rgr +.001 wgr Dense
Interacting Ri +.001 wi Dense
Living Penalty Rl -.00015 wg Dense

Finally, is mentioned that the ranges of the weights shown in Table 1 are utilized during train-

ing to calculate total reward Rt at any given step t as shown in Equation 1; for convenience the
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following sections refers to normalized weights, for instance actual wi = 0 corresponds to .5

normalized.

Rt = wg(Rg +Rgt +Rga +Rl) + wca(Rca +Rco) + wgrRgr + wiRi (1)

4.3 Observations

The observation set is the tool that enables the agent to collect information about the current

state of the environment. The process of defining suitable observations is crucial for a successful

training; they have to provide to the agent all the necessary information in order to be able to make

a correct decision, while on the other hand, they must not overhead the agent with ineffective in-

formation that add up in the complexity of the problem.

Table 3: Observations of the agent

Observation Type

Local Agent’s Velocity Vector Observation
Current Goal Distance (ρ ∈ [0, 1]) Vector Observation
Current Goal Angle (θ ∈ [0, 2π]) Vector Observation

Raycast Sensor
3 ∗ 30 rays around agent, 7m search distance Raycast Observation
Detecting: Agents, Obstacles, POIs and Walls

Normalized Goal Weight (wg) Vector Observation
Normalized Collision Weight (wca) Vector Observation
Normalized Grouping Weight (wgr) Vector Observation
Normalized Interaction Weight (wi) Vector Observation

Specifically, in this work have been used two different types of observations including both

vector observations and raycast observations as shown in Table 3; also a virtual representation of

an agent and its observations are presented at Fig. 2. First, the agent collects information about

goal-oriented features including its local velocity, current distance to goal and current goal angle.
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Second, a raycast sensor has been used that through the rays that shoots, measures distances to

objects (agents, obstacles, POIs and walls) in the environments. Finally, the profile is passed to

the agent as observation which contains the four normalized weights {wg, wca, wgr, wi}.

Figure 2: A character from a crowd and its observations [46].

4.4 Actions

In this section the action set which has been used in this work is described. An agent can

move in every direction while also is able to rotate. Specifically, seven actions have been assigned

including Stand Still (SS), Move Forward (MF), Move Backwards (MB), Move Left (ML), Move

Right (MR), Rotate Left (RL) and Rotate Right (RR). The agent is able to move forward with

maximum speed of 1.3m/s, while with speed of .13m/s in all other directions since it is more

natural for people to move in a forward direction. Moreover, a Stand Still (SS) action is utilized

to give the ability to the agent to stay still in its current position with the aim of executing other

behaviors, except from goal seeking. Finally, as the policy defines a living penalty reward (Rl),

enforces the agents to select Move Forward (MF) action, when seeking a goal position, as they are

moving faster and minimize the punishment that they receive from that reward signal.
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4.5 Training Strategy

This section presents the training strategy of this work by describing how observations, actions

and rewards have been used, while also shows the process of designing an environment suitable

for a successful training. First, the implementation of PPO provided by ML-Agents Toolkit has

been used in combination with a Fully Connected Neural Network consisting of two hidden layers

each having 128 nodes. The actual configuration parameters that have been used are shown in

Table 4.

Table 4: Default values for configuration parameters used in training

Parameter Value Description

Learning Rate 3e-4 For Gradient Descent Updates
γ .99 Discount factor
H 15000 Maximum steps per episode
Epochs 3 Training Epochs
Batch Size 1024 Batch Size
Buffer Size 10240 Buffer Size
β 5e-3 Entropy Regularization Strength
ε .2 Divergence Threshold

In order to execute a successful training, a suitable simulation environment is mandatory;

Fig. 3 shows the training environment, blue objects are obstacles and walls, red objects define the

POIs and yellow cylinders represent the agents. During training agents spawn randomly in one

of the four corners of the environment while they randomly set as destination position one of the

rest; the places of POIs change randomly over a period of time. Parameters related to the agent

and simulation are shown in Table 5.

Table 5: Default simulation parameters used in training

Parameter Value Description
r .5m Agent Radius
Rs 7m Maximum search distance
T .04s Simulation step
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Furthermore, the training phase is divided into episodes; each agent is trained during its own

episode which starts by the time the agent spawns in the environment and ends when the agent

collides with an obstacle (not other agents), when it arrives at the goal position or a predefined

number of steps has passed. After an episode ends, the object of the agent is destroyed and a new

agent is initialized again in a random position, while the rest of the agents already in the environ-

ment continue the training.

Figure 3: The training environment with alternations between obstacles and POIs [46].

Moreover, a curriculum-based approach has been used to train the agents, where the difficulty

of the environment is increased gradually. First, the training process starts with a small number

of agents while the number increases to reach the maximum of 75 agents. Second, regarding

the various behaviors, it would be very difficult for the agent to distinguish them if were mixing

up from the beginning. Thus, the weight of every behaviour is randomized while keeping the

weights of the others constant in order to enable the agents to understand how different values of a

single weight affects the specific behavior. Note that each change on the weights is kept constant

for several episodes instead of changing them in every episode. Likewise, in the beginning of

randomization of individual weights, only values near to minimum and maximum values of the

range are used before the whole spectrum is covered; this also helps for the agent to understand

faster the behavior. Finally, when the agent successfully discovers the various behaviors and
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manages to adjust to the fluctuations of the weights, the training continue to the final phase where

all the weights are randomized to train the agent with every combination of them.

4.6 Experiments and Evaluation

This section is focused on the evaluation of the trained model through a list of various meth-

ods described in the following subsections. Evaluation and results are based on multiple statistics

including agents’ speed, density(number of agents in an area), distance to the nearest neighbor

(DNN) and distance to the closest point of interest (DPOI). The different experiments are took

place in four different simulation environments, as shown in Fig. 4; statistics are collected only

inside blue regions where agents inherit the different profiles. First, Hall environment simulates a

bidirectional scenario where agents spawn in one of the two spawn areas and have as destination

a random position in the opposite side of the hall. Similarly, the 4-Way Crossing environment

consists of four spawn areas where again, agents have to move to the opposite side. Second, the

Circular environment is utilised to spawn agents in the perimeter of a circle while setting as their

goal position the exact opposite point on circle’s perimeter. Finally, the Museum environment is

used as a demo scene and simulates a large scene consisting of 400 agents with different distribu-

tion of behaviors.

Figure 4: The various simulation environments [46].
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4.6.1 Sensitivity Analysis

The following subsections 4.6.1.1 and 4.6.1.2 describe the results of experiments regarding

variations of values for weights and density respectively.

4.6.1.1 Weight Sensitivity

This type of experiment is utilised to extract information about how different values of weights

affect each one of the behaviors goal seeking, collision avoidance, grouping and interaction.

Specifically, the weight of every behaviour is gradually increased in four different normalized

weight values 0, .33, .67 and 1, while the weights of the other three behaviors are kept constant

to .5; the profile of every run is assigned to all agents in the scene. Moreover, the experiment

described above is executed on all three environments, Hall, Crossing and Circular, considering

both small (6) and large (75) number of agents. Results are based on three metrics speed, distance

to the nearest neighbor (DNN) and distance to the closest point of interest (DPOI); Fig. 5 demon-

strates the effect of different values of each weight with 75 agents in the Hall environment, while

also shaded areas indicate the standard deviation from the mean.
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Figure 5: Weight Sensitivity in the Hall environment. Metrics include Speed, Distance to NN and
DPOI [46].
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Goal seeking behaviour is one of the more crucial tasks when simulating human crowds. As

shown in the left chart of Fig. 5 when wg increases, the average speed of the agents is also in-

creased, as they become more goal oriented and prefer to move towards the goal position, as fast

as possible, avoiding grouping with other agents or interacting with the environment. Notice that

there is some deviation from the mean, which happens because the weights of the rest of the be-

haviors are set to .5, a situation that makes the agents phase a mixture of behaviors; in some cases,

agents may slow down to avoid a collision or execute some minor grouping or interaction with the

environment. Furthermore, the value of DNN and DPOI are also increased as wg is rising; that

indicates again that agents start to ignore the other behaviors and set as main task the arrival at the

destination.

A similar situation happens with collision avoidance where as wca increases agents start to

move faster, as they keep larger distance to other agents. Likewise, they stay further from POIs

both to avoid collision and ignore the interaction point. Deviation from mean, again, is due to the

value of the rest of the weights and the mixture of behaviors.

Moreover, the increase of grouping behavior’s weight wgr has a significant effect on the aver-

age speed of the agents as they slow down to form groups with other agents. In addition, DNN is

also decreasing because agents stay in groups near to their neighbors, for a longer period of time.

The value of DPOI is slightly decreases too, as because of wi = .5 several agents are forming

groups near to POIs executing a mixture of both grouping and interaction with them. The effects

of different values of wgr in Hall environment are shown in the bottom side of Fig. 6.

Finally, regarding the Interaction with POIs, similar results to those of the Grouping behavior

are extracted. As the value of wi is rising, agents move slower to interact with POIs in the en-

vironment. The distance to both agents and POIs is decreased as an effect of agents stay around
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POIs, near to each other, for long period of time. How different values of wi affect the movement

of agents in Circular environment is shown in the top part of Fig. 6.

As demonstrated by the evaluation results of that experiment, the profile of the agents is

strongly affected by the different values of {wg, wca, wgr, wi}. This method brings diversity of

behaviors in virtual crowds with a single training, while it enables real-time modification and con-

trol of agents’ profile by adjusting the weights of each behavior to achieve the desired results.

Figure 6: Effect of weight changes for the Interaction (Top) and Grouping (Bottom) Behavior
[46].

4.6.1.2 Density Sensitivity

This section contains the experiment that examines how the model behaves with different

number of agents. As mention in section 4.5 the model has been trained with maximum of 75

agents. This experiment, stress test the model by examining its generalizability using a range of

50-300 agents; specifically, a set of constant ideal weights is set for every behavior. Generally, as

shown in Fig. 7 the system is able to reflect the effects of each behaviour even with a large number

of agents, outside the training limits.
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Figure 7: Density Sensitivity in the Crossing environment. Metrics include Speed, Distance to
NN and Distance to POI [46].

First, the speed of the agents is significantly decreased in goal seeking and collision avoidance,

something that seems logical and expected, as more agents are moving in the same space, however

they are still able to avoid collisions while they are moving towards their goal destinations. The

speed of grouping and interaction behaviors, on average, seem to remain constant as agents con-

tinue to form groups or interacting with POIs, regardless the density. Second, distance to Nearest

Neighbors (DNN) is decreasing for all behaviors, except grouping. This is also an effect of more

agents moving in the same space, something that enforcing them to come closer to each other,

while regarding the grouping behavior stays almost constant as agents were already near to each

other, regardless the density. Finally, the results of the experiment shows that different densities

are not strongly affecting DPOI in the case of interaction behavior, something that make sense as

agents just need to stay around POIs. Moreover, DPOI face some decrease as density rises in colli-

sion avoidance behavior, while in grouping and interaction generally remains constant with some

fluctuations. The effects of different densities in Hall environment are demonstrated in Fig. 8 for

every behavior.And
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Figure 8: Effect of different densities in Hall environment [46].

4.6.2 Comparison with Power Law and Real-World Data

This section presents the comparison of the trained model, named CCP, against simulated

crowd data from Power Law (PL) [24] and real-world captured data (RW) [36]. Real world data

are a result of two different datasets, Zara which represents a medium density bidirectional flow on

a sidewalk, and a more dense dataset University, which consists of students walking in a university

environment; the two dataset combined contains 25 minutes of captured data with 1317 tracked

trajectories. The simulated data from CCP (34 minutes) and PL (32 minutes) consist of 2800

trajectories in a bidirectional scenario without any obstacles, while the number of agents varies

between 50 and 350. Moreover, both simulators had the same parameters, agent radius was set to

(r = .5m) and neighborhood radius to (Rs = 7m); for CCP the following weights have been used

wg = 1, wca = 1, wgr = 0, wi = 0 to represent the ideal goal seeking and collision avoidance

behavior. The details of each dataset used in the comparison are shown in Table 6.

Table 6: Parameters of dataset used in Fundamental Diagram.

Dataset Description Trajectories Duration(min)
Zara Medium Density, Bidirectional Flow

1317 25
University High Density, Multidirectional Flow

CCP 50-350 Agents, Bidirectional Flow 1400 34
Power Law (PL) 50-350 Agents, Bidirectional Flow 1400 32
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The Fundamental diagram presented in Fig. 9 demonstrates the speed(m/s) of agents related

to the density(agents/m2). The equation by Helbing et al. [17] has been used for the calculation

of total density; dta is the local density of an agent a at time t, where pt
a andN(at) are the position

and all neighbors of agent a at time t, as shown in the following equation:

dta =
∑

i∈N(at)

1

πR2
s

exp(−||pt
i − pt

a||2/R2
s). (2)

As the results show in Fig. 9, generally the speed of agents decreases as density rises in both

real word and simulated data. Notice that both CCP and PL have similar trend, while on the other

hand the RW data produces richer results because of the natural movements of humans; this open

the doors for further exploration and research.
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Figure 9: Fundamental model for current model, Power-Law and Real-World Data [46].

4.6.3 Comparison with Baseline Collision Avoidance RL Model

This experiment compares the CCP model to a simple model that has been trained only for the

basic crowd behaviors, goal seeking and collision avoidance. In order to compare the two models,
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the normalized weights for CCP have been set to (wg = 1, wca = .5, wgr = .375, wca = .5). Vi-

sually, the two models produce similar results while the Baseline model seems to be slightly more

efficient, as the agents does not get affected by environmental elements, such as POIs. However,

the comparison results shows that with a simple manipulation of weights, end results can be com-

parable, while optimizing the goal seeking behavior, to be more intelligent, would be beneficial

and also indicates directions for future work.

4.6.4 Weights Outside Training Limits

Section 4.6.1.2 presented the generalizability of the system in the aspect of density; this section

evaluates how the system behaves when weights that have not been seen during training phase are

used. Similar to the experiment in Section 4.6.1.1, the weight of every behavior takes various

values while keeping the weights of the other behaviors constant. In the Fig. 10 are presented

statistics, taken from Crossing environment, for Speed, DNN and DPOI for weights values inside

the range [-4,4]; note that first, the weights used during training have been normalized to the

range [-1,1] and then, the experiment is based on runs with weights two and four times outside the

training bounds. The general observation for all three statistics is that, as the weights are assigned

to values further outside the training range, they strengthen the effect of the behaviors in some

cases, where in other cases they remain almost constant; generally agents are still able to execute

the various behaviors successfully.

First, regarding the average speed of the agents, the results show that all the behaviors are

strengthen in the range [-2,2], while in larger values there are minor effects; grouping behavior

seems to benefits speed for smaller values, this may be due to the fact that agents try to strongly

avoid grouping with other agents which may enables them to not slow down as much.
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Second, the range [-2,2] seems to positively affect grouping and interaction for DNN statistic,

while further values leave them unaffected. The trend of goal seeking shows a decrease in DNN

for values larger than 1; this may be due to agents have a too goal-oriented profile that enforces

them to find their goal destination, as fast as possible, leaving collision avoidance secondary.

Regarding DPOI metric, the average goal behavior distances stay unchanged, as such dis-

tances have no direct influence on the goal-seeking abilities of agents. Furthermore, lower ex-

treme weights seems to positively affecting collision avoidance behavior, as a reduction in the

corresponding weight correlates to a decrease in DPOI, showing that agents cannot reliably avoid

obstacles. Finally, the distance to POI is decreased for lower weights, in grouping and interaction

behaviors, while the distance remains fairly constant as the weights increase.
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Figure 10: Statistics for extreme weights outside training bounds. [46]

4.7 Demonstration in Museum Environment

As mentioned in Section 4.6 and shows in Fig. 4, a museum environment has been developed

to test the performance of the model in a larger scale. Likewise, the museum scene has been uti-

lized not only to demonstrate the various behaviors of the agents, but also to show the authoring

aspect; in the provided video of the submitted work various simulations, with different profile
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distributions are presented. The model is capable of reflecting its abilities in a large, complex

environment while giving the ability to the user to customize the profile of individual agents or

group of agents, at run-time. A demonstration of the museum scene is shown in Fig. 11.

Figure 11: Museum Exhibition.

4.8 Discussions and Future Work

This section summarises the work that has been presented in Chapter 4, a framework that

utilize a reinforcement learning method that enables the simulation of virtual crowds with diverse

behaviors. The system is able to simulate heterogeneous crowds thought a single training process

that learns multiple behaviors simultaneously. Likewise, the framework can simulate both simple

crowd behaviors, like goal seeking and collision avoidance, while also enables the mixture of more

complex behaviors like, grouping and interaction with the environment; additional behaviors can

easily be incorporated to the policy.
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This work is contributing to the area of virtual crowds by developing a framework that provides

configurability to the profiles of learned agents, even during run-time. Moreover, this method pro-

vides a high degree of behavior diversity, while not only is able to simulate agents with multiple

fixed behaviors, but also, enables the mixture of them through different combinations of the rep-

resentative weights. As shown in the evaluation process, the system manages to reflect the various

behaviors, for a large number of simulated agents, in a complex environment. Finally, the user can

fully control the simulation by adjusting the profile distribution to achieve the desired results.

Despite the successful generalizability of the system in term of scenario variations, the lack

of variation in such scenarios during training reduces its effectiveness. Furthermore, this work

only incorporates a limited amount of behaviors, while the addition of more behaviors is straight-

forward. Lastly, the definition and balance of every weight’s range is a challenging and manual

process, however it has to be done once.

The proposed work opens various directions for future research study. First, the training pro-

cess could produce more effective results by investigating more the reward function, observations

and action space. First, more sophisticated reward function could be used that is not just a linear

combination of weights. Second, would be every interesting and effective to search ways to auto-

mate the process of defining and balancing the ranges for the weights of the behaviors. Third, the

simulation results could be improved by increasing the degrees of freedom that the agents have

for action selection. Finally, the agents could explore the environment more effectively by using a

more complex observation set, something that would improve the simulation results.
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Chapter 5

Mesoscopic Approach

This approach mainly focuses on creating crowd simulations with a large number of agents by

combining various components. Specifically, in this work two components have been trained, a

field component, which navigates the agents efficiently, and a crossing component which simulates

a real zebra crossing. These components can be placed and combined strategically to develop

various populated environments.

5.1 Methodology

This section describes all the details about the proposed method and all the tools and tech-

niques that have been utilized. The models for the two components have been trained using

Proximal Policy Optimization (PPO) implementation provided by ML-Agents Toolkit [22] on

a personal computer equipped with an Intel i5-9600K CPU, a Nvidia RTX2070 GPU and 16GB

RAM.

32
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5.1.1 Unity Navigation System

Unity provides an AI package which contains components that enable agents to intelligently

navigating in a game. The package provides solution to two different problems regarding agents’

navigation, first how to find a path to the destination position and second, how to move to that

location. The first issue can be characterized as global and static, as the agent take into account a

large part of the scene to calculate an appropriate path, while the second one is local and dynamic,

as the agent has to worry about local collision avoidance. Unity’s navigation system consists of

three key components, which are shown in Fig. 12, including NavMesh Component, NavMesh

Agent Component and NavMesh Obstacle Component, which the use of each one is described

below; note that Off-mesh link is also one of the main components which allow agents to cross

non-walkable paths, e.g by jumping, however they have not been used in this work.

Figure 12: Visual overview of Unity Navigation System components.

First, NavMesh Component is utilized to define the walkable surfaces that agent can use to

navigate through the environment. A NavMesh can be baked from multiple surface areas which

And
rea

s P
an

ay
iot

ou



34

each one is able to have different area cost. The area cost of the surface defines how difficult it is

to walk across a specific area; lower values means the area is more easy to walk. Specifically, the

agents, in order to calculate the shortest path to the destination, they use the A* Algorithm [15].

In order to apply A* in an environment, a graph of connected nodes has to be built; this happens

by placing a point on each polygon of the mesh. Thus, area costs mentioned above are used as

link cost for the A* algorithm during the calculation of the path; the cost to move between two

nodes is calculate as distance ∗ linkCost. This tool gives the ability to the user to manually tune

the navigation surface to achieve the desired results.

Furthermore, NavMesh Agent Component is attached to the agents that need to move over

NavMesh surfaces. This component describes all the parameters of the agent, while is also used to

define an object as moving agent to take advantage of RVO algorithm (Section 5.1.2) for collision

avoidance. This component gives the ability to the user to define a list of parameters for the agent

including, radius, height, speed, angular speed and acceleration.

Finally, NavMesh Obstacle component is used to define the an object as obstacle; this obstacle

can be either static or moving. Agents try to avoid these objects during the simulation while also,

they can be used as a way to completely block a specific path.

5.1.2 Reciprocal Velocity Obstacles (RVO)

The Reciprocal Velocity Obstacles (RVO) [60] algorithm is used for multi-agent real time

navigation and is based on Velocity Obstacle (VO) [10] concept, which was originally introduced

for the navigation of robots in the real world. RVO is based on the idea that each agent assumes

that all the other agents have the same decision process on how to avoid collisions. When an agent

predicts that is about to collide, moves only halfway out of the way of the collision direction,

and assumes that the other agent will follow the same process by moving halfway to the opposite
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direction; a visual representation of the process is shown in Fig. 13. The paper by van den Berg

et al. [60] demonstrated that this approach can provide optimal collision avoidance by eliminating

incorrect predictions, that were an issue of simple VO methods.

Figure 13: RVO upcoming collision avoidance between two agents.

5.1.3 Delaunay Triangulation and Interpolation via Barycentric Coordinates

In computer graphics the process of building a mesh from a list of points is very common; a

mesh with uniform triangles is very important as affects both quality and performance. Delaunay

triangulation [8, 7] is a method that enables the construction of a set of uniform triangles; this

method tends to avoid narrow triangles by maximizing the minimum angle of all the angles of the

constructed triangles.

In order to define a set of connected triangles as a Delaunay triangulation, in two-dimensional

space, it has to meet a specific condition. As shown in Fig. 14 which demonstrate a Delaunay

triangulation, circumcircles of all triangles must not contain any of the other points. The main

mechanism of the algorithm is to determine whether one or more points lies inside any circumcir-

cles, a situation that set the triangulation as invalid; this evaluation can happen in two-dimensional

spaces using the determinant. Finally, they have been proposed multiple algorithms with various
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methods including flipping of edges, incrementally adding edges and divide and conquer methods;

for this work, a unity package named ”delaunator-sharp” has been used [12].

Figure 14: A Delaunay triangulation with circumcircles of triangles.

In this work the triangulation is used to divide a grid into triangles and then interpolate the

values inside those triangles based on the main values on triangles’ vertices. There are multiple

ways to interpolate values inside a triangle, however they are not yield the same quality results.

First, there is the naive solution which is based on distance; a point is affected more by the closer

vertices and less by them which are farther away. The interpolation of the value of a point p inside

a triangle4v1v2v3 using distance is given by the equation:

V aluep =
Wv1 ∗ V aluev1 +Wv2 ∗ V aluev2 +Wv3 ∗ V aluev3

Wv1 +Wv2 +Wv3

where, Wv1 =
1

Distancev1
, Wv2 =

1

Distancev2
, Wv3 =

1

Distancev3

(3)

This method provides quite good results and is very easy to implement, however is problematic

when the triangles are not balanced. As is shown in Fig. 15, which tries to interpolate colors inside

a triangle, the results of a balanced triangle on the left side are appropriate, however on the right
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triangle an issue arises. The point p that lies on the edge v1v3 should be a combination of v1 and

v3 only, and should not be affected by the color of v2. This may not seem a big issue in color

interpolation, however can cause serious problem when is used to interpolate data.

Figure 15: Naive triangle interpolation by distance and its issues.

In order to successfully interpolate values inside a triangle a method based on Barycentric

Coordinates has to be utilised. Barycentric coordinates can be used to express the position of

every point located on the triangle with three scalars w1, w2 and w3. This method is the most

suitable for interpolation of data inside a triangle and the interpolated values are not affected by

triangle form. The interpolated value of a point p and the calculation of the three scalars w1, w2

and w3 on a 2d plane are given by the following equations:

V aluep =Wv1 ∗ V aluev1 +Wv2 ∗ V aluev2 +Wv3 ∗ V aluev3

where,

Wv1 =
(Yv2 − Yv3)(Px −Xv3) + (Xv3 −Xv2)(Py − Yv3)
(Yv2 − Yv3)(Xv1 −Xv3) + (Xv3 −Xv2)(Yv1 − Yv3)

Wv2 =
(Yv3 − Yv1)(Px −Xv3) + (Xv1 −Xv3)(Py − Yv3)
(Yv2 − Yv3)(Xv1 −Xv3) + (Xv3 −Xv2)(Yv1 − Yv3)

Wv3 = 1−Wv1 −Wv2

(4)
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5.2 Rewards

As mentioned in previous sections, a model in RL is trained by maximizing a reward function.

The following paragraphs describe all the rewards signals for both field and crossing components.

Details about reward signals for both field and crossing components are shown in Table 7.

Field Component focuses on guiding the agents to their goal positions fast and efficiently.

They have been used both sparse and dense rewards. First, regarding the sparse rewards, a field

receives a positive reward Rg for every agent that arrives at its destination, while it be punished

by a negative reward Rd for every agent that did not manage to find its destination during the

defined training steps. Furthermore, a negative dense reward Rdc is used to force the field to avoid

producing multiple values for same coordinates. Likewise, two rewards Rdn and Rdp, are used to

encourage the field to avoid overcrowding as much as possible; inter-agent distance is calculated

by all the agents that currently appear in the field and is a normalized value in the range [0, 1].

Finally, a living reward Rl is utilized to enable fast navigation of the agents; the living penalty is

multiplied by the inverse of current agent’s normalized speed, thus slower agents contributes to

the field with larger negative reward.

Table 7: Reward per event for both components.

Event Symbol Field Reward Crossing Reward Type

Agent Goal Arrival Rg +1.0 / N +1.0 / N Sparse
Agent Destroyed Rd -.5 / N -.5 / N Sparse

Duplicate Coordinates Rdc -.025 -.025 Dense
Inter-agent Distance <= .65 Rdn -.00025 -.00075 Dense
Inter-agent Distance >= .65 Rdp +.00015 +.0001 Dense
Living Penalty Rl (-.001 / N )*(1-Sa)) (-.0008 / N )*(1-Sa) Dense

Correct Door Open Rlc - +.15 * Lt Dense
Incorrect Door Open Rlnc - -.15 * Lt Dense
Agents crossing while Red Rar - -.002 Dense
Agents crossing while Green Rag - +.00025 Dense
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Crossing Component is used to guide the agents to pass a road using a zebra crossing. The

majority of rewards are similar to those in the field component while a list of dense rewards has

been introduced to control the crossing. First the rewards Rlc and Rlnc are used to reward or

punish the component every time that correctly or incorrectly opens the door to allow agents to

enter the crossing; these rewards are multiplied by the normalized timestep of lights Lt, thus if

the component incorrectly opens or closes the door near the alternation time of light state, penalty

is smaller. Finally, a set of dense rewards Rar and Rag are used to punish the component when

agents crossing the road while should not, and positively reward it in an opposite situation where

the crossing is empty.

5.3 Observations

In this section the observation sets for both field and crossing components are described. Ob-

servations are mainly obtained by visual observations and specifically using grid sensors; the

observation set for every component is described below. The Table 8 contains all the details about

observations for both components; grid sensors have been used for both components while cross-

ing utilize another two vector observations.

Figure 16: A visual representation of Grid Sensors.And
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Field Component collects observations using two grid sensors. The first grid sensor has a

size of 20*20 and collects information about agents, obstacles and walls; for this method the

observation stack has been set to 2, something that helps the component to estimate the velocity

of moving objects including, agents and dynamic obstacles. The second grid sensor is used to

enable the component to indirectly read the interpolated values of surface grid. This sensor gets

the average value of every 2x2 patch in the surface grid which is in the range [-1, 1]. The two

sensors are presented in Fig. 16, first sensor on the right and second on the left.

Crossing Component utilize the two grid sensors as used in the field component while an-

other two vector observations have been added. First, Ls is a boolean value that indicates whether

the light for the crossing is green(open) or red(closed). Furthermore, Lt is normalized float value

in the range [0, 1] which indicates the time remaining for the lights to change state; for example if

lights duration is 45 seconds and 30 seconds remain until state change, then Lt = 30/45 ≈ .67.

Table 8: Observations for the field and crossing components

Observation Type Field Crossing

Grid Sensor
Grid Size: 20 ∗ 20, Observation Stack: 2 Visual Observation Y Y
Detecting: Agents, Obstacles, Walls

Grid Sensor
Grid Size: 20 ∗ 20, Observation Stack: 1 Visual Observation Y Y
Detecting: average value of each 2x2 patch

Light Timestep (Lt) Vector Observation N Y
Light State (Ls) Vector Observation N Y

5.4 Actions

This section presents the actions which have been used for both components. First, both com-

ponents use 52 continuous values, in range [-1.0.1.0], as shown in Table 9. The first 4 values are
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assigned as main values to the points of the four corners of the surface grid; these points remains

fixed and just take a value so the triangulation process can fill the entire surface. Then, the remain-

ing 48 values are used to construct 16 sets of the form {Xi, Yi, V aluei}, where Xi and Yi are the

coordinates of point i, while V aluei is the value at point i.

Table 9: Actions for field and crossing components

Action Description

52 Continuous Values [-1.0,1.0] First 4 used as values for the four corners. The 48 rest
values remaining are used as a set {Xi, Yi, V aluei}

1 Discrete Value [0,1] A boolean value representing whether the door is open
or closed; used only in crossing component.

Moreover, for the calculation of the coordinates, the continuous values that have been pro-

duced by the network are normalized in the range [0.0, 1.0] and then multiplied by grid size; for

instance, if we have a 20x20 grid and the values 0.2 and 0.5 for X and Y respectively, the coordi-

nates of the point i would be (Xi = 4, Yi = 10). A visual representation of a grid surface with

both main and interpolated values is shown in Fig. 17; the color of a cell represents its value, pos-

itive and negative values are represented by green and red respectively, while the intensity shows

how positive or negative the value is.

Figure 17: A visual representation of main and interpolated values on grid surface.And
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5.5 Training Strategy

This section explains the training strategy of this work by discussing how observations, ac-

tions, and rewards have been employed, as well as demonstrating the process of building envi-

ronments conducive to successful training for both components. An implementation of the PPO

provided by ML-Agents Toolkit has been used in combination with a Fully Connected Neural Net-

work consisting of two hidden layers each having 128 nodes. The actual configuration parameters

for the training of both components are shown in Table 10.

Table 10: Default values for configuration parameters used in training for both components

Parameter Value Description

Learning Rate 6e-4 For Gradient Descent Updates
γ .99 Discount factor
H 5000 Maximum steps per episode
Epochs 3 Training Epochs
Batch Size 512 Batch Size
Buffer Size 10240 Buffer Size
β 5e-3 Entropy Regularization Strength
ε .2 Divergence Threshold

First, regarding the training of the Field Component, the environment shown on the top of

Fig. 18 has been designed. In every episode, several NavMesh Agents (black capsules) spawn

in the blue area and set as destination a randomly generated position inside the red area; orange

objects are obstacles that change position on every episode and alter the size of the openings.

Furthermore, the white/gray area is a single field component with 20x20 surface size. An episode

ends when all the agents arrive at their destination or a number of predefined steps have been

passed; multiple instances of the environment have been used to decrease training time. During

training, the rewards, observations and actions, that have been described in the previous sections,

are used. Specifically, the field collects observations and every 100 fixed time-steps (2 seconds)
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produces 20 main values, for 20 distinct points in the surface grid, using the process presented in

Section 5.4. Then, these points are used in the triangulation process in order to cover the surface

area with a mesh of triangles. The value of each cell on the surface grid is calculated using inter-

polation between the three main values on the vertices of the triangle; details about triangulation

and interpolation methods are described in Section 5.1.3. Finally, the NavMesh surface of a field

component consists of patches of 4 cells each and the various costs that have been used are shown

in Table 11; the cost of a NavMesh patch is calculated by the average value of all four cells in the

current patch.

Table 11: Costs used for every NavMesh area.

Area NavMesh Cost Average Patch Value Range

A0 8 [−1,−.8]
A1 6 (−.8,−.6]
A2 5 (−.6,−.4]
A3 4 (−.4,−.2]
A4 3.5 (−.2, 0]
A5 3 (0, .2]
A6 2.5 (.2, .4]
A7 2 (.4, .6]
A8 1.5 (.6, .8]
A9 1 (.8, 1]

Crossing Component has been trained using a similar approach as the field component. How-

ever, in this case there is the need of controlling the navigation of the agents based on the state

of the crossing lights. Thus, first the NavMesh surface of the component is constructed using the

same process as above. During the training of the crossing component a setup like the one shown

in the bottom of Fig. 18 has been used. A number of agents spawn equally in the two blue areas

and have as destination a random point on the other side. The box below indicates whether the

crossing is open (green light) or closed (red light), and the orange object represents a door that
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opens and closes to allow or prevent agents to enter the crossing. The training environment con-

sists of two connected crossing components, while multiple instances have been used to decrease

training time. Each instance has its own controller that handles the lights; specifically in the train-

ing phase the state of the lights change every 60 seconds. Finally, the observations described in

Section 5.3 are used and an action is taken every 100 fixed time steps (2 seconds).

Figure 18: A visual representation of the training process for both field and crossing components.

5.6 Experiments and Evaluation

This part focuses on evaluating the trained model of a field component using a variety of

approaches outlined in the subsections that follow. Multiple statistics, including agents’ speed,

distance to the nearest neighbor (DNN), and time to arrive at goal, have been used for evaluation

and establishing results. The evaluation focuses on two aspects, the first is about density sensitivity

and comparison with pure RVO implementation and the second is related to different update times

where new values are assigned to the surface grid. Finally, for evaluating the model, four different

setups have been developed, a) a default setup, b) a setup containing columns, c) a maze setup and

d) an empty setup, which they are presented and described in the following subsections.
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5.6.1 Density Sensitivity and Comparison with pure RVO Implementation

This experiment evaluates field component’s model, over multiple setups, with different den-

sities, while also compares it with the pure RVO implementation. The model has been trained

with 10-20 agents, thus model’s generalizability is evaluated too, with 25-125 agents moving over

a single field component. Agents spawn in blue area and set as destination a point in red area.

First, the default environment that has been used during training is used. As shown in Fig. 19

the speed of the agents is decreased as the number of agents increased, while the average agents’

speed of the model is higher than that of pure RVO. Moreover, the model’s goal arrival time is

significantly smaller compared to that of pure RVO, while also the average distance to NN of the

model seems to be larger in the more dense scenarios.
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Figure 19: Comparison of the model with plain RVO in default training environment.
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The next setup differs from that used in the training phase and contains several columns as ob-

stacles; the environment setup and the charts of the three statistics are shown in Fig. 20. Similarly,

we notice that the average agents’ speed for the trained model is higher. Likewise, the average

time is smaller which indicates that the model is able to navigate the agents more efficiently; the

above observation is also supported by the larger DNN which agents have, something that shows

that the model tries to avoid overcrowding when is possible. The results using this environment

setup shows that the model is able to perform well event with setups not seen during the training.

Finally, the charts for another environment setup, see Fig. 21, which represents a maze, show sim-

ilar trends to those of columns setup; despite model’s efficiency is still remarkable, is not as good

as before due to the increased complexity of the environment.
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Figure 20: Comparison of the model with plain RVO in columns environment.
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Figure 21: Comparison of the model with plain RVO in maze environment.

Furthermore, except from the previous environment setups that contain obstacles with different

placements, another setup, which is an empty field, has been also used to evaluate the model. The

setup is presented at Fig. 22 combined with the charts for the three statistics. The main purpose of

the field component is to navigate agents as efficiently as possible through a number of obstacles.

However, this environment setup has been developed to test the behavior of the model when no

obstacle are presented in the field. As shown in the results of Fig. 22, the average goal arrival time

of the agents is noticeably smaller compared to pure RVO implementation, while also the average

distance to NN is slightly larger in denser scenarios. Finally, the speed of the agents is similar in

both situations as there are no obstacle to significantly decrease the speed of the agents.And
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Figure 22: Comparison of the model with plain RVO in empty environment.

5.6.2 Timestep Sensitivity

This section focuses on evaluating the model with different update times. As mentioned in

Section 5.4, during the training process, an update timestep of 100 steps (2 seconds) has been

used. Thus, in order to evaluate systems generalizability in terms of update times, three different

timesteps have been applied, 100 steps (2 seconds), 250 steps (5 seconds) and 500 steps (10

seconds). For the purpose of this experiment, the default training environment setup has been

used. As shown in the results, the model produces fairly similar results by using the three different

timesteps. This indicates that a larger update timestep could be used to reduce the performance

cost of the model, as every time the model produces new values, triangulation and interpolation

have to take place, while also the agents have to re-select a new path.
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Figure 23: Comparison of different update times.

5.7 Discussions and Future Work

This section provides a summary of the work given in Chapter 5, a framework that aims to give

the ability of creating medium-to-large scale crowd simulation by combining various components.

In this work they have been presented two components, trained using Reinforcement Learning, a

field component that navigates the agents efficiently, and a crossing component that simulates a

real-world zebra crossing with road lights. The RVO implementation provided by Unity’s AI pack-

age has been utilize in order to give the agents a basic ability of collision avoidance. Furthermore,

a list of evaluation experiments have been employed to test the efficiency and generalizability of

the model, both in terms of density and update time, in different environment setups.And
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The evaluation process shows that, regarding the navigation of the agents, the system is able

to perform better compared to pure RVO implementation, even in setups that have not been seen

during training. However, there are some limitations. First, there is an added performance cost,

as every time the field produces new values, triangulation and interpolation have to be applied in

order to assign a new value to every cell in the grid surface, while also agents have to repath as

the the costs of the NavMesh areas change. A second limitation is that the field only receives ob-

servations for objects inside its area, something that may affect the generalizability when multiple

components are combined. A way of sharing information between neighbor components would be

beneficial when developing very large scale environments. The efficiency of the model is strongly

based on the costs of every area patch; thus, the exploration of how to balance these costs and

how many different area types should be used could be an interesting topic to investigate. Finally,

the current work proposed only two components, while the development and training of more

components is definitely a future plan.
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Chapter 6

Conclusion

This chapter concludes this thesis. First, Chapter 2 presented a list of related works, regard-

ing crowd simulation and crowd authoring, divided in four categories, heterogeneity in crowds,

global navigation, crowd authoring and reinforcement learning. Second, Chapter 3 showed all the

necessary tools that have been used for the implementation of this work. Furthermore, Chapter 4

has described every detail about the microscopic approach including methodology, reward signals,

observation set, action set and training strategy. Then, the results of an extensive evaluation have

been presented followed by a demonstration of the model in a demo museum scene. Finally, the

chapter ends with a discussion about the contribution of the work to the field of crowd simulation,

limitations and future plans. Moreover, Chapter 5 presented a mesoscopic approach and described

all the tools and techniques used including Unity’s Navigation System, Reciprocal Velocity Ob-

stacles (RVO), Delaunay triangulation, and triangle interpolation using Barycentric coordinates.

Likewise, has showed all the details about how reinforcement learning has been applied to train

the model and how rewards, observations and actions has been utilized by the training strategy.

Finally, a list of experiments are executed to evaluate the efficiency of the model followed by a

discussion and future work section.
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During the months that I was working on this thesis, I had the opportunity to get involved in

an area of computer science that I am interested in and gain significant knowledge about various

things, something that will definitely be helpful for my future career. First, the exploration of

various techniques for crowd simulation was a chance to learn about existing works. Second, the

hands-on usage of deep reinforcement learning made me more familiar with machine learning

and how can be applied to solve various problems. Moreover, I had the chance to further explore

methods that are used in computer graphics including triangulation and interpolation. Finally, the

submission and acceptance of part of this thesis to an academic conference will definitely be a

starting force for my future academic career.
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Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[2] Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics,
6(5):679–684, 1957.

[3] Panayiotis Charalambous and Yiorgos Chrysanthou. The PAG Crowd: A Graph Based Ap-
proach for Efficient Data-Driven Crowd Simulation. Computer Graphics Forum, 33(8):95–
108, 2014.

[4] Panayiotis Charalambous, Ioannis Karamouzas, Stephen J. Guy, and Yiorgos Chrysan-
thou. A Data-Driven Framework for Visual Crowd Analysis. Computer Graphics Forum,
33(7):41–50, 2014.

[5] Stephen Chenney. Flow tiles. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’04, page 233–242, Goslar, DEU, 2004. Euro-
graphics Association.

[6] Nicolas Courty and Thomas Corpetti. Crowd Motion Capture. Computer Animation and
Virtual Worlds (selected best papers from CASA 2007), 18(4–5):361–370, 2007.

[7] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. De-
launay Triangulations, pages 183–210. Springer Berlin Heidelberg, Berlin, Heidelberg,
2000.

[8] B. Delaunay. Sur la sphère vide. Bulletin de l’Academie des Sciences de l’URSS. Classe des
sciences mathematiques et na, 1934(6):793–800, 1934.

[9] Funda Durupinar, Nuria Pelechano, Jan Allbeck, Uǧur Güdükbay, and Norman I. Badler.
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